On the diophantine equation 2x + M 2y = Zn2m for mersenne number Mn

نویسندگان

چکیده

In this paper, we first show that the exponential Diophantine equation 2x + 1 = z2has unique solution (x, z) (3, 3). We then for n > 1, exponential. M 2y z2 where Mn := 2n − is nth Mersenne number, has exactly two solutions in non-negative integers viz., 0, 3) and (n 2, 1). Also, prove w4 y, w, n) (5, 3, . Finally, w2m, m 2 no integral solutions. conclude with some examples to illustrate our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exponential Diophantine Equation 2x + by = cz

Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + ...

متن کامل

On the number of Diophantine m-tuples

A set of m positive integers is called a Diophantine m-tuple if the product of any two of them is one less than a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. On the other hand, there are infinitely many Diophantine m-tuples for m = 2, 3 and 4. In this paper, we derive asymptotic extimates for the numb...

متن کامل

On the number of solutions of the Diophantine equation

1 Q (o) • (i)(l) 1 " *)• » (Z) (!) for any positive integers n, m9 and fc (<n). Apart from these cases, it is more difficult to decide whether there are infinitely many pairs of equal binomial coefficients or not. The problem of equal binomial coefficients was studies by several authors (e.g., Singmaster [6], [7]; Lind [4]; Abbot, Erdos, & Hanson [1]). Recently, in an article in this Quarterly,...

متن کامل

On the Exponential Diophantine Equation ( 4 m 2 + 1

Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Health Sciences (IJHS)

سال: 2022

ISSN: ['2550-6978', '2550-696X']

DOI: https://doi.org/10.53730/ijhs.v6ns6.10028